
Using Artificial Neural Networks to Approximate Bayesian Inference

Heejae Jang 1 Aaron Lanz 1 Xinlei Lin 1

Abstract
Despite noisy and/or sparse evidence, humans
are still able to generate reasonable inferences
to solve inductive problems. In this paper, we
train artificial neural networks (ANNs) on a task
that requires inductive reasoning. We find that
ANNs can perform these tasks using Bayesian-
like strategies without the need for an explicit
computation of the log likelihood. Our results
provide a computational approach for approxi-
mating Bayesian inference that is inspired and
consistent with the function of neural circuits in
the brain.

1. Introduction
Humans and other animals often behave near optimally
when faced with uncertainty (Battaglia et al., 2003; Ernst
& Banks, 2002; Hillis et al., 2004; Körding et al., 2007;
Merfeld et al., 1999; Wolpert et al., 1995). This uncer-
tainty can come in the form of sensory or internal noise
that blurs our interpretation of information (low level un-
certainty) (Ghahramani, 2015; Ma et al., 2006; Orhan &
Ma, 2017) or can emerge in the form of incomplete sen-
sory input that ambiguates our models of the world (high
level uncertainty) (Ghahramani, 2015). Although we have
a solid understanding of the mathematical and computa-
tional strategies required to solve or approximate Bayesian
inference tasks, we know much less about the strategies
used by neural circuits to perform optimal inference.

ANNs are an ideal tool to study biologically plausible
mechanisms of human learning and behavior. ANNs are
a subset of machine learning tools that are inspired by
the computational principles used by the nervous system
(Zador, 2019). In particular, ANNs are composed of lay-
ers of interconnected nodes (synaptically coupled neu-
rons) that propagate non-linear activity (action potentials
and synaptic transmission) throughout the network to ac-
complish specific goals. Even the way ANNs are trained
have potential neurological correlates (Payeur et al., 2020).
ANNs have been successfully used to model numerous
types of human behaviour, including semantic categoriza-
tion (Rogers, 2003), syntax recognition (McClelland et al.,
2013; Elman, 1990), motor control (McClelland et al.,

2013), and perception (McClelland et al., 2013; Lecun
et al., 2015). When trained on psychophysical tasks us-
ing noisy sensory data, ANNs do indeed perform optimally
(Orhan & Ma, 2017), suggesting that neurally-inspired
computational models can approximate Bayesian inference
when faced with low level uncertainty. Whether the same
types of models can perform Bayesian inference on tasks
with high level uncertainty remains unclear.

Here, we train fully-connected ANNs on a version of the
number game – a task involving decision making using in-
complete data (Tenenbaum, 2000) – and then analyze rep-
resentations in the output layer to determine if Bayesian-
like strategies emerge in the network during training. We
show that networks trained on the number game indeed dis-
play strategies consistent with Bayesian inference. These
results emerge in relatively simple neural networks (2 lay-
ers, 16 nodes each) and improve as the networks increase
in complexity. Furthermore, we show that the inference
performed by neural networks shifts if the priors are mod-
ified, suggesting ANNs are a flexible strategy to approxi-
mate Bayesian inference in tasks with ambiguous and in-
complete information.

2. Methods
2.1. Task: number game

The number game is a type of inductive problem first in-
troduced in (Tenenbaum, 2000). In this game, a computer
program generates positive numbers ranging from 1 to 100.
The program presents the player with a small subset of
numbers and the player’s goal is to to evaluate which num-
bers will also be accepted by this program. Essentially, the
task requires the player to induce what rule the program is
using to generate the numbers based on sparse evidence.

2.2. ANN architecture

General structure Our ANN consists of an input layer
fully connected to a number of hidden layers via a recti-
fied linear unit (ReLu) activation function, which is then
connected to the ouptut layer via a sigmoid activation func-
tion. The input layer is a one-hot encoding representation
of two sets of inputs, one containing a set of observations,
and the other containing the number to be evaluated. The

Project for CCM 2021

output layer is a single number; 0 if the number to be eval-
uated is not accepted by the program and 1 otherwise.

Training dataset For all training and testing, the num-
bers are positive numbers ranging from 1 to 100. The
set of observations in the input layer is generated by sam-
pling a hypothesis (uniform random sampling from the cu-
mulative distribution function of prior probabilities) and
randomly selecting 5 numbers at most from that hypoth-
esis. Our hypothesis space consists of two types, mathe-
matical and interval. Examples of mathematical hypothe-
ses are odd/even numbers, square numbers, multiples of
n, primes, numbers ending with a particular digit, and so
forth. Interval hypotheses are consecutive numbers such
as X = [12, 13, 14, 15, 16, 17]. These are manually de-
fined, resulting in the entire hypothesis space to consist of
34 mathematical hypotheses and 5050 interval hypotheses.
Each hypothesis is weighted with different prior probabil-
ities through a free parameter λ. λ is attributed to math-
ematical hypotheses and each mathematical hypothesis is
weighted with equal prior probabilities. 1-λ is attributed to
interval hypotheses each of which is weighted differently
using an Erlang distribution with σ = 10. The second pool
in the input layer, the number to be evaluated, is sampled
from the same hypothesis with 50% chance. The target
output label is 1 if the number is sampled from the same
hypothesis and 0 otherwise.

Optimization The ANN is optimized through a stochastic
gradient descent of either mean-squared-error (MSE) or bi-
nary cross-entropy (BCE) as loss functions which we will
compare in the results section.

Parameters The parameters to be explored are the prior
probabilities λ, number of hidden layers, number of nodes
in each hidden layer, shape of the network (e.g., constant
or variable nodes in each layer), and type of loss function
used.

2.3. Bayesian inferences

Probability theory, and in particular Bayes’ rule, is thought
to provide a “logic of uncertainty”. Specifically, we may
wish to learn a model of the relationship between pairs of
variables X and Y . Mathematically, this is expressed as a
conditional probability P (Y |X).

A full Bayesian inference makes predictions by averaging
over all likely hypotheses under a posterior distribution.
For a discrete variable X = {x1, ..., xn} belonging to a
category C, the predictive distribution of new observations
Y = {y1, ..., yn} will be the product of posterior and like-
lihood, marginalized over all possible hypotheses:

P (y ∈ C | X) =
∑
h∈H

P (y ∈ C | h)P (h|X) (1)

Here the posterior in (1) is computed as

P (h|X) =
P (X|h)P (h)∑

h′∈H P (X|h′)P (h′)
(2)

where we assume that all hypotheses are equally likely and
we sample uniformly from the hypothesis space. Under the
assumption that the samples from X are drawn i.i.d., the
likelihood decomposes as a product of individual probabil-
ities:

P (X|h) =
n∏

i=1

P (x(i)|h). (3)

In this project, instead of making Bayesian computations
stated above explicitly, the goal is to see whether fully
connected neural networks can take uncertainty into ac-
count and achieve similar Bayesian-like predictions implic-
itly. Note that the neural networks still optimize weights as
point estimations rather than distributions.

3. Result
3.1. Number game Bayesian predictions

To determine if ANNs can perform Bayesian inference on
tasks with incomplete or ambiguous information, we sim-
ulated the number game - a task where players must eval-
uate whether a number belongs to a set of observed num-
bers, which are itself drawn from a mathematical hypothe-
sis (e.g. all numbers end with 7) or interval hypothesis (e.g.
all numbers are between 20 and 30). Since a set of observed
numbers can often belong to numerous interval or math-
ematical hypotheses, this task contains ambiguous infor-
mation that can be solved optimally using Bayesian infer-
ence. We began by calculating the theoretical probability of
membership (according to Bayesian theory) for numbers 1-
100 for several sets of observed numbers. As shown in Fig-
ure 1, when the observed numbers unambiguously point to-
wards a certain hypothesis (e.g. X = [16, 8, 2, 64] = math-
ematical; or X = [16, 23, 19, 20] = interval), the Bayesian
predictions reflect the appropriate hypothesis with high cer-
tainty. However, when the observed numbers are ambigu-
ous (e.g. X = [16]), the Bayesian predictions reflect a
mixture of mathematical and interval hypotheses. Thus,
the number game is an excellent task to study Bayesian in-
ference when faced with incomplete or ambiguous data.

The goals of the next sections are to train ANNs on the
number game and see if the Bayesian predictions observed
in Figure 1 emerge within the networks, and if they do, de-
termine what types of architectures lead to optimal approxi-
mations. To train ANNs on the number game, we presented
ANNs with pairs of observed numbers and unknown num-
bers (numbers to be evaluated), and trained the networks
to predict whether the unknown number belonged with the

Project for CCM 2021

Figure 1. Probability of membership for numbers 1-100 as the
observed number sets are varied between ambiguous numbers,
mathematical numbers, and interval numbers. All calculations are
performed using λ = 2/3.

observed numbers. We constructed ANNs with two sets of
inputs, one set containing the observed numbers and the
other set containing the number to be evaluated; a vari-
able number of hidden layers / nodes; and a single output
node. After 1,000,000 training pairs, we froze the network
weights and asked the network to predict whether the num-
bers 1-100 belonged with the observed number sets shown
in Figure 1.

3.2. Vertical complexity

We compared ANN predictions with different number of
layers. Figure 2 shows examples of ANNs with increas-
ing number of layers and fixed node number (16). ANN
with layer=2 and node=16 per layer achieves reasonable
predictions compared to Bayesian inference (the goal), and
ANN with layer=3 and node=16 per layer achieves better
performance with its predictions more similar to the ones
made by Bayesian inference. However, when we increase
layer number to 4, the predictions become worse. The net-
work fails to converge with layer number beyond 4. This
result holds with similar number of nodes tested, suggest-
ing that the vertical complexity of ANNs can affect the per-
formance. Specifically, higher layer number can improve
performance, but the ANN performance no longer bene-
fits from more layers once the optimal number of layers is
passed.

3.3. Horizontal complexity

We next compared the performance of three-layer ANNs
with varying number of nodes within the hidden layers.
For this analysis, we focused on the predictions for the ob-

Figure 2. Performance comparison for numbers generated from
an interval hypothesis. Panel 1: predictions made by Bayesian
inference. Panel 2-4: predictions made by ANNs with increasing
number of layers from 2 to 4 and fix number of nodes (16 nodes).

served numbers X = [16, 23, 19, 20]. As shown in Fig-
ure 3, all ANNs, regardless of the number of nodes, cor-
rectly classify the observed numbers as an interval hypoth-
esis. However, as the number of hidden nodes increases
from 8 to 64, the width of the ’prediction’ narrows. Thus,
the output of ANNs converges towards the Bayesian pre-
dictions as the hidden layers increase in width.

3.4. Network shape

We compared the ANN predictions with constant (64-64-
64), decreasing (100-60-32), and increasing (32-60-100)
number of nodes with successive hidden layers with the
total number of nodes across all hidden layers kept con-
stant. As shown in Figure 4, when the observation is a
single number X = [16], all three models predict even num-
bers with high probabilities. However, while the constant
and the increasing models seem to exhibit interval predic-
tions around X = [16] and high prediction overall for all
even numbers, the decreasing model more closely resem-
bles Bayesian predictions in that it has a higher selectivity
and specificity for multiples of 4. The decreasing model
also outperforms the other two when powers of 2 are given
as an observation (Figure 5). The constant model, in par-
ticular, predicts other even numbers with non-zero proba-
bilities but the decreasing model exclusively selects power
of 2 only.

Project for CCM 2021

Figure 3. The ANN output converges towards the Bayesian pre-
diction for X = [16, 23, 19, 20] as we increase the number of
nodes in the hidden layers.

Figure 4. Despite sparse evidence consisting of a single number
[16], the decreasing model closely resembles Bayesian predic-
tions with higher selectivity and specificity for multiples of 4.

Figure 5. The decreasing model outperforms the other two models
by exclusively selecting powers of 2.

3.5. Prior probability

For our best network, i.e., 3 hidden layers with decreasing
number of nodes 100-60-32, we tested how predictions de-
pend on the prior probabilities dictated by the free parame-
ter λ. We predicted that a small λ value would yield inter-
val predictions since interval hypotheses are more heavily
weighted than mathematical hypotheses and the ANNs are
trained more with examples drawn from interval hypothe-
ses. Consistent with our prediction, as shown in Figure 6,
whether the evidence is sparse (X = [16]) or consists of
multiples of 2 (X = [16, 8, 2, 64]), λ=0.01 outputs interval
predictions.

Figure 6. λ=0.01 yields interval predictions whereas λ=0.8 yields
mathematical predictions.

Project for CCM 2021

3.6. Loss function

Loss functions define an objective against which the per-
formance of the model is measured, and the parameters
learned by the model is determined by minimizing the cho-
sen loss function.

Binary Cross-Entropy Loss In the context of classifica-
tion, the model’s prediction h(xi) will be a value between
0 and 1 that can be interpreted as a probability of a new
observation belonging to a class C after observing train-
ing examples xi. If the probability were less than 0.5 we’d
classify it as “not in class C”. With the assumption that the
data i.i.d, we have the following expression to obtain the
cross entropy loss:

L(x, y) =

N∑
i=1

yi log(h(xi)) + (1− yi) log(1− h(xi))

(4)

where y is the true label, which is either 1 or 0.

Mean-Squared Error Loss Given the assumption that the
data follows normal distribution, the mean-squared error is
given by calculating the squared difference from the true
label and the output and summing across all training exam-
ples. MSE loss is often used in regression problems.

L(x, y) =
1

N

N∑
i=1

(yi − h(xi))2 (5)

where y is the true label, which is either 1 or 0.

We found that the ANNs trained with MSE loss function
converges to lower training error than those trained with
BCE loss. As shown in Figure 7, in networks with 2 layers
and 16 nodes per layer, the MSE case converges around 0.1
whereas the BCE case converges around 0.45. In networks
with 4 layers and 64 nodes per layer, the MSE case achieves
lower error (converging aorund 0.08), but the training error
in the BCE case fails to decrease.

Besides the training error, the performance of networks
trained with MSE loss is significantly better than those
trained with BCE loss. Figure 8 shows performance of
networks trained with different loss functions for interval
hypotheses. Networks trained with MSE loss makes better
predictions as the probabilities for numbers in the corre-
sponding intervals are higher.

Our rationale for using a BCE loss function is that it is com-
monly used in classification tasks, which is consistent with
our task - classifying whether or not the numbers to be eval-
uated belong to the same category as the observed numbers.
However, a key assumption of BCE loss is that the data are
generated from Bernoulli distributions and therefore can

Figure 7. Training error comparison between BCE loss and MSE
loss functions in networks with 2 layers, 16 nodes per layer and
networks with 4 layers, 64 nodes per layer (all other parameters
fixed). Errors are binned every 1000 epochs

be classified into two categories. In Bayesian terms, this
means we assume a binomial prior if we choose a BCE
loss function, and a Gaussian prior if we choose a MSE
loss function. In reality, the numbers are not binomially
distributed. With an extensive training dataset and hypoth-
esis space, it is likely that the true distribution of the data
is closer to Gaussian, according to the central limit theo-
rem. Therefore, ANNs trained with a MSE loss function
achieves better results in the number game.

3.7. Optimized ANN

While not exhaustive, the above analysis revealed that the
optimal ANN architecture within our parameter space was
the following: 3 hidden layers with decreasing nodes from
100N to 60N to 32N. Comparing the output of the opti-
mized ANN to the Bayesian predictions made in Figure 1
show that this network can approximate Bayesian inference
for ambiguous numbers, mathematical numbers, and inter-
val numbers (Figure 9).

4. Conclusion
Based on the numerical results, in most cases, trained
ANNs can make reasonable predictions for the number
game and achieve similar performance to predictions made
by explicit Bayesian inference, suggesting that ANNs seem
to be able to perform Bayesian inference implicitly to some
extent.

The predictions made by ANNs are affected by the archi-
tecture including the vertical complexity, horizontal com-
plexity and network shape. Prior probability of the hy-
potheses space and loss functions also affect the quality of

Project for CCM 2021

Figure 8. Performance for interval examples between BCE loss
and MSE loss functions in networks with 2 layers, 16 nodes per
layer.

Figure 9. Comparison of theoretical Bayesian predictions with the
output of the optimized ANN (3 layers decreasing 100N-60N-
32N) for ambiguous numbers (X = [16]), mathematical numbers
(X = [16, 8, 2, 64]), and interval numbers (X = [16, 23, 19, 20]).

Project for CCM 2021

predictions.

However, one limitation of our strategy is that our trained
ANNs do not make optimal Bayesian inference. For ex-
ample, in the case of example numbers X = [16, 8, 2, 64],
which are clearly not drawn from interval hypotheses, if
we force the network to have a strong bias towards inter-
val hypotheses (λ = 0.01), it makes predictions based on
interval hypotheses while the optimal Bayesian inference
still makes predictions based on mathematical hypotheses.
It is unclear what kinds of predictions humans will make
and whether humans still make optimal Bayesian inference
when they have strong biases. It is likely that humans also
perform sub-optimally when biases are enforced. One fu-
ture experiment would be to compare human predictions
with ANN predictions when there is a strong bias towards
a certain type of hypotheses.

References
Battaglia, P. W., Jacobs, R. A., and Aslin, R. N. Bayesian

integration of visual and auditory signals for spatial lo-
calization. 20:1391–1397, 2003.

Elman, J. L. Finding structure in time. 14:179–211, 1990.

Ernst, M. O. and Banks, M. S. Humans integrate visual and
haptic information in a statistically optimal fashion. 415:
429–433, 2002.

Ghahramani, Z. Probabilistic machine learning and artifi-
cial intelligence. 521:452–459, 2015.

Hillis, J. M., Watt, S. J., Landy, M. S., and Banks, M. S.
Slant from texture and disparity cues: Optimal cue com-
bination. 4:967–992, 2004.

Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S.,
Tenenbaum, J. B., and Shams, L. Causal inference in
multisensory perception. 2:1–10, 2007.

Lecun, Y., Bengio, Y., and Hinton, G. Deep learning. 521:
436–444, 2015.

Ma, W. J., Beck, J. M., Latham, P. E., and Pouget, A.
Bayesian inference with probabilistic population codes.
9:1432–1438, 2006.

McClelland, J. L., Rumelhart, D. E., and Hinton, G. E.
The appeal of parallel distributed processing. pp. 52–57,
2013.

Merfeld, D. M., Zupan, L., and Peterka, R. J. Humans use
internal models to estimate gravity and linear accelera-
tion. 398:615–618, 1999.

Orhan, A. E. and Ma, W. J. Efficient probabilistic inference
in generic neural networks trained with non-probabilistic
feedback. 8:1–14, 2017.

Payeur, A., Guerguiev, J., Zenke, F., Richards, B. A., and
Naud, R. Burst-dependent synaptic plasticity can coor-
dinate learning in hierarchical circuits. 2020.

Rogers, J. L. M. T. T. The parallel distributed processing
approach to semantic cognition. 4:310–322, 2003.

Tenenbaum, J. B. Rules and similarity in concept learning.
12:59–65, 2000.

Wolpert, D. M., Ghahramani, Z., and Jordan, M. I. An
internal model for sensorimotor integration. 269:1880–
1882, 1995.

Zador, A. M. A critique of pure learning and what artificial
neural networks can learn from animal brains. 10:1–7,
2019.

