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Abstract

We present GPT-4IAR, a transformer neural network archi-
tecture for modeling and predicting human behavior in the
board game four-in-a-row (4IAR). Experiments show that
conditioning action predictions on longer histories of previ-
ous moves leads to improved accuracy over prior state-of-the-
art models, hinting at longer-term strategic biases in human
gameplay. Reaction time prediction is also explored, showing
promise in capturing meaningful gameplay statistics beyond
raw actions. This work ultimately aims to produce a faithful
emulator of human cognition to afford detailed investigation
into how humans plan and make decisions.

Introduction
Planning and decision making are active areas of research
in cognitive science, with great interest in understanding the
inner mechanisms underlying how the brain makes decisions
in complex, naturalistic scenarios (Hunt et al. 2021). In or-
der to study the cognitive processes and neural structures
that dictate how humans decide which action to take in a
given scenario, there has been an increasing effort to con-
struct computational models able to describe behavior in dif-
ferent environments and tasks (Collins and Shenhav 2022).

To create accurate cognitive models of planning, games
have shown to be a great testing ground (Allen et al. 2023).
In particular, games offer an environment that feels intuitive
and enjoyable for players, while offering a flexible platform
that allows researchers to study complex planning through a
well-defined set of rules that encode a task. This allows sci-
entists to expand their study to a wider audience that would
be attracted to the game, as well as being able to design en-
vironments with considerably higher complexity than what
has been used previously in psychological studies, while
keeping the tasks amenable to scientific analysis (Allen et al.
2023).

In this work, we focus on the game four-in-a-row (4IAR),
which was previously created to study and develop mod-
els around decision-making in a combinatorial game setting
(van Opheusden et al. 2017). Models built around this game
have studied different aspects of planning; we direct our at-
tention toward the study of expertise and its effects in game-
play (van Opheusden et al. 2023). Our main contribution is
GPT-4IAR, a transformer neural network architecture that
mimics human behavior in 4IAR. Previous work has used

a fully connected neural network to predict the move made
by a human player given the current board state (Kuperwajs,
Schütt, and Ma 2023). Here, we provide our network with a
sequence of previous board states and moves. We show that
using the transformer’s attention mechanism over previous
board states and player’s actions improves the network pre-
diction accuracy over the previous state-of-the-art. We also
explore the prediction of other human statistics, namely the
time it takes someone to make a move (‘reaction time’), and
show good results toward extending the architecture to do
inference on these other gameplay-related statistics.

As a motivation, our ultimate goal is to build a ‘per-
fect emulator’ network which is able to mimic the behav-
ior of specific human players, conditioned on a sufficiently
long history of previous moves, games, or other summary
statistics such as skill level. Such a faithful human emulator
could be compared to our best hand-crafted, interpretable
cognitive models of learning, planning and decision making
(van Opheusden et al. 2023), affording detailed investiga-
tions into how and where our best interpretable models dif-
fer from actual human behavior, as a means to push forward
our understanding of human cognition. As a byproduct, we
would also have models that play like humans (as opposed
to like an AI), which may have also have practical applica-
tions for the gaming industry and more broadly for the field
of human-computer interaction.

Background
Task and Dataset
The task under study is a variant of tic-tac-toe called 4-in-a-
row (4IAR), where two players aim to connect four tokens
on a 4 × 9 squares board, as proposed by van Opheusden
et al. (2017). An example 4IAR board is shown in Figure 1.

Figure 1: Example board of 4IAR.



This game has approximately 1.2 × 1016 non-terminal
states, which provides a level of complexity that far ex-
ceeds that of other tasks commonly used in psychology
(van Opheusden and Ma 2019). The game is also “simple”
enough that building tractable computational models of be-
havior is still possible (van Opheusden et al. 2017), which
can be leveraged to study different aspects of human plan-
ning and decision-making, such as expertise (van Opheus-
den et al. 2023).

For this study, we use a set of approximately 10 million
games gathered from a mobile app with a visually enriched
version of the game.1 Users always move first against an AI
agent which implements a cognitive model that uses a plan-
ning algorithm (van Opheusden et al. 2017; van Opheusden
et al. 2023). The AI opponent uses parameters adapted from
fits of previously collected human-vs-human games (Kuper-
wajs, Schütt, and Ma 2023), to yield human-like behavior.
The first player (human) is represented by black pieces and
the opponent (AI) by white pieces, akin to X’s and O’s used
in tic-tac-toe. Users have a maximum of about ten seconds
to make their move, and they end up making, on average,
7.3 moves per game until reaching a termination condition
(victory for human, victory for AI, or tie).

Related Work
Transformers in Sequential Decision Making.
Transformer-based architectures (Vaswani et al. 2017)
have enjoyed great success in tasks with sequential data,
with applications in natural language processing, computer
vision, and audio processing, to name a few (Lin et al.
2022). By modeling states, actions, and possibly rewards,
transformers have also started to enter the domain of
reinforcement learning (RL), planning and sequential
decision-making (Janner, Li, and Levine 2021; Chen et al.
2021; Carroll et al. 2022). Notably, they have shown great
capabilities in imitating human behavior, which may open
the door to building computational models in cognitive
science and neuroscience for complex tasks (Shafiullah
et al. 2022). While we are not specifically building an RL
agent, we are interested in replicating and inferring statistics
from human behavior in 4IAR through sequences of moves,
with the goal of producing a transformer model which
we may probe for information to improve the tractable
cognitive model to study human planning in the game (van
Opheusden et al. 2017).

Neural Networks for Games. Neural network architec-
tures have been used extensively in games, developed to ex-
plore strategies in competitive games that have beaten the
best human players, with the most prominent example be-
ing AlphaZero (Silver et al. 2018; Arulkumaran, Cully, and
Togelius 2019). More related to our goals, lately there has
been increasing interest in using these models not to find
optimal strategies, but to mimic human behavior (McIlroy-
Young et al. 2020a,b; Pearce et al. 2023). In a similar fash-
ion to the latter work, we aim to investigate the capabili-
ties of a transformer architecture to predict and emulate hu-

1Details about the mobile app and dataset redacted for
anonymity.

man behavior in 4IAR, with particular interest in observing
long-horizon dependencies in gameplay (e.g., does condi-
tioning the action on ten – or a hundred – previous moves,
possibly even from previous games, yield a better prediction
than using only the current board state?). Previous research
has been done in using transformers to play chess (Noever,
Ciolino, and Kalin 2020) and go (Ciolino, Kalin, and Noever
2020), but they do not focus on the “human” aspect of the
game, giving more emphasis to the transformers’ capabili-
ties of actually playing the game.

Prior Work on 4-in-a-row. 4IAR has been used mainly to
build a tractable computational model of human cognition,
developed with hand-crafted, interpretable parameters to ex-
plain the decision-making process (van Opheusden et al.
2017). The model has been leveraged to study the interaction
of different RL systems (Kuperwajs, van Opheusden, and
Ma 2019) and how expertise affects gameplay (van Opheus-
den et al. 2023). However, in hand-crafting a model, there
may be complex patterns that can be missed; hence, it is of
interest to have an “oracle” that serves as a perfect emulator
of the true cognitive process that we can use to trace such
patterns. For this objective, a fully-connected neural network
has been previously proposed (Kuperwajs, Schütt, and Ma
2023), which showed a significantly better performance in
predicting the next move that a human player would make,
compared to the hand-crafted cognitive model. A major lim-
itation of this work is that predictions are based only on the
current, single board state. While the current board state is
enough to make optimal predictions, it is not enough to pre-
dict which move a (specific) human would make. Thus, we
seek to go beyond this study and single-moves, using a trans-
former to study possible longer-horizon dependencies, i.e. if
the network can predict the next move better if it has more
knowledge from the past history of moves of the human
player than just the present board – the history coming from
the current game as well as from previously played games.
Additionally, we extend the network task to predicting the
reaction time, i.e., the amount of time that a player takes to
make a move, and not just the move itself. For example, this
may be of interest to test the idea that players that have more
experience will be able to make decisions faster, and to see
if there is a discernible pattern in how long they take based
on the move or other factors.

Methods
In this section, we describe the implementation details of
GPT-4IAR, the transformer architecture we developed to
tackle human behavioral mimicry in 4IAR. In this work, we
are interested in predicting two things: the action, which is
the square where the player is going to place their next piece,
and the reaction time (RT), which is the amount of time that
a player takes to take an action, measured in seconds.

Data Representation
Inspired by the Trajectory Transformer (Janner, Li, and
Levine 2021), we decided on a simple tokenization approach
to represent the boards, actions and RTs as tokens, which we



can then feed to a standard GPT architecture with little mod-
ification. Figure 2 summarizes the process for the tokeniza-
tion of one round, which is composed of one board state and
the corresponding action and RT.

We represent each board state b as a vector of nine entries,
one for each column on the board. Each entry corresponds
to a base-3 representation of the respective column, as each
square on the board has three possible states (empty, black,
white), and each column is given an offset to induce an or-
dering in the vector representation. Then, each action a is
represented by a single scalar. Since the board is composed
of 4× 9 = 36 squares, there are 36 possible actions, each of
which is represented by a single integer value. Finally, due
to the nature of tokenization, each RT t must be discretized.
To do this, we took the full empirical distribution of RTs
from the entire dataset and binned it into twenty quantiles
of equal probability, each having 5% of the total probability
mass. We can then use these quantiles as boundaries for each
of our bins, which we use to decide which token to assign to
a given t. Thus, for GPT-4IAR one round comprises of 11
tokens: 9 tokens for the board state, 1 token for the action,
and 1 token for the RT.

Base-3+column
offset

1090 206

a=[0,0,...,1,0,0]

[0,35]+action
offset

762

Discretize+time
offset

780

Figure 2: Tokenization scheme of board states, actions, and
discretized reaction times (RTs).

We define a trajectory τ , following the convention used
by the Trajectory and Decision Transformers, as a sequence
of rounds:

τ = (b1, a1, t1, . . . ,bT , aT , tT ) ,

where the indices i ∈ [1, T ] indicate the number of the round
played, and T is the current or latest board state. Note that
in our representation the trajectory only includes the rounds
– board bi and actions ai, ti – of the human user (black
pieces). The next board in the sequence, bi+1, already in-
cludes the move of the AI opponent (white pieces) as a re-
sponse to what the user did in the i-th round.

Network Architecture
A general diagram of the architecture of GPT-4IAR is shown
in Figure 3. Essentially, we follow the architecture of GPT-
2 (Radford et al. 2019), with the sequence of bespoke to-
kens we have described in the previous section replacing the
string-based tokenization used by text-based large language
models.

As a training objective, we use a weighted mean cross-
entropy loss, assigning a weight of 1 to the action and RT
tokens, and 1

9 to each of the nine board state tokens. Even
though we are not interested in predicting board states per se,
our preliminary analyses showed that including board states
in the learning objective with a small weight achieves over-
all better predictive performance than having no weight (and
also better than unit weight), possibly by helping the net-
work learn an explicit board representation as well as some
opponent modeling.

Figure 3: GPT-4IAR architecture. The transformer network
is trained on predicting the next token in the sequence (board
state, actions and RTs). Figure adapted from “The Illustrated
GPT-2” (Alammar 2019).

To train the network, we use a 90/5/5 train/validate/test
split on our dataset of 10 million games. We use the AdamW
optimizer (Loshchilov and Hutter 2019) to minimize the tar-
get loss with parameters α = 6 · 10−4, β1 = 0.9, β2 = 0.95
and λ = 0.1, which are the default parameters of the open-
source implementation we base GPT-4IAR on.

For model assessment, we go through the whole test set
to gather the evaluation metrics. Given a board b, the net-
work outputs a probability distribution over all action to-
kens which is used to compute the cross-entropy loss. We
also pick the most likely token as our action prediction used
to compute accuracy. Similarly, we input a board and an ac-
tion (b, a) to extract a probability distribution over the RT
tokens. To measure accuracy, we pick the most likely RT.
Accuracy rate may not be the best metric by which to as-
sess RT prediction, since RT is a (discretized) metric contin-
uum. As such, we also evaluate RT prediction through root-
mean-square error (RMSE), i.e., distance between our model
prediction and the data. For this, we calculate the expected
value of the RT token as our prediction and then compute the
RMSE with respect to the true RT for each data point, and
we aggregate all errors with an average. Losses are calcu-
lated separately for action tokens and RT tokens, which are
averaged over the test set to give the final reported values.

For all experiments, unless stated otherwise, the network
hyperparameters were fixed to the standard GPT-2 values
shown in Table 1.

Experiments
In this section we report our preliminary results with GPT-
4IAR. While thorough statistical testing and additional ex-
periments are needed to draw more definite conclusions,
several trends can already be observed in our experiments.



Hyperparameter Value
Embbedding dimensionality 768
Layers 12
Attention Heads 12

Table 1: Fixed hyperparameters used for training.

Training Networks with Different Context Lengths
In order to evaluate the performance of GPT-4IAR at pre-
dicting human behavior when more past information is po-
tentially available both during training and at test time, we
trained three networks that differed in their context length
(also known as context window) – the maximum token se-
quence that the network can process –, all else being equal.
We trained three networks with context lengths of 256, 512,
and 1024 tokens, respectively. The loss curves from training
are shown in Figure 4.

Figure 4: Observed training and validation loss for GPT-
4IAR networks with different context lengths.

The curves show an asymptotic reduction of both training
and validation loss as a function of context length (lowest
loss achieved by the different colored lines), suggesting that
the network is able to extract more information from observ-
ing further into the past to improve predictions. Moreover, it
seems likely that further extending the context length would
still improve performance. However, in practice there are
well-known computational limitations to implementations
with longer context windows due to the quadratic scaling
of the standard attention mechanism as a function of context
length (Vaswani et al. 2017).

Assessing Performance Under Different Sequence
Lengths
Now that we have trained networks with different context
lengths, we can evaluate the role of sequence length on per-
formance at inference time, by systematically varying the
length of the sequence of past rounds the network can use to
make predictions. Clearly, the maximum number of rounds
each network can process is limited by its context length.
Remember that a round is 11 tokens long, so our networks

can store in context from up to 23 rounds for our smallest
network to up to 93 rounds for our largest network. Consid-
ering that a game is on average 7.3 rounds in our dataset,
even our smallest network can store in context a few past
games.

Moreover, we provide comparisons with the previous
state-of-the-art prediction results (Kuperwajs, Schütt, and
Ma 2023), particularly in terms of accuracy on next-move-
prediction on the test set, and some qualitative assessments
on the output of the network on single boards.

Action Prediction. The accuracy of action prediction as a
function of the size of a trajectory of past game states, ac-
tions and RTs received as context is shown in Figure 5. We
observe a substantial, positive effect on prediction accuracy
of increasing the sequence length. In particular, we observe
an improvement of up to around 6 − 7% (from about 41%
to 48% accuracy) when we include more past rounds into
the context compared to only having one round (the current
board). These results ostensibly indicate that the transformer
is able to better predict behavior based on long-term depen-
dencies in decisions. Notably, performance does not seem
to be plateauing, suggesting that networks could be able to
exploit even longer temporal correlations.

Finally, while all GPT-4IAR models exhibit similar per-
formance when evaluated on sequences of the same length,
there is perhaps a small advantage in using larger networks
trained on longer contexts. This result, if confirmed, would
suggest that networks trained on longer contexts are better
even when limited to short sequences. More analyses are
needed to assess statistical significance of this finding.

Figure 5: Action prediction accuracy of GPT-4IAR models
with different context length as a function of provided se-
quence length (one round = 11 tokens).

We compare our best performing GPT-4IAR model
against the previous state-of-the-art fully connected network
model by Kuperwajs, Schütt, and Ma (2023) in Table 2.

Some examples of the actions predicted by GPT-4IAR are



Prediction Metric Fully Connected GPT-4IAR
Actions Accuracy 41.71 % 48.08 %

Loss 1.866 1.504
RTs Accuracy — 14.69 %

Loss — 1.508
RMSE — 5.16 bins

Table 2: Comparison between the fully connected model
and GPT-4IAR at predicting actions and RTs, using different
metrics: accuracy, cross-entropy loss, and root mean squared
error (RMSE). Only GPT-4IAR predicts RTs.

shown in Figure 6. Qualitatively, observing Figure 6(a), we
can see that the network is able to capture lapses in human
gameplay. The optimal move would be to block white from
connecting four on a diagonal, but we can see a low, but
non-zero probability of making moves that would try to de-
velop a win condition for black. In the board shown in Figure
6(b) we can also see that the network is able to capture un-
certainty on “harder” boards too, with diffuse probabilities
across the board, e.g. on the second row, seventh and ninth
column, to make a decision.

Figure 6: Example distributions of predicted moves (right)
given two distinct input boards (left). Intensity of red in each
square indicates the action probability assigned by the GPT-
4IAR network. See text for discussion.

Reaction Time Prediction. We also evaluate the perfor-
mance of the network at predicting the reaction time of a
player. First, we measure prediction accuracy by choosing
the most likely RT token given a trajectory of past boards,
moves and RTs. RT prediction accuracy improves with the
length of the provided sequence, as shown in Figure 7,
reaching a maximum of approximately 14.69%.

Since RT is a continuous variable, accuracy may not nec-
essarily be the best measure of performance for prediction,
e.g. it may still be acceptable if we predict one bin up or
down from the most likely value. Hence, we also study the
RMSE of RT prediction, measured in terms of bin distance,
shown in Figure 8. Similarly to the accuracy results, RMSE
improves as a function of sequence length. For reference, the
RMSE of the RT data with respect to a constant prediction
is 6.66 bins.

Discussion
In this paper, we introduced GPT-4IAR, a transformer ar-
chitecture to predict human behavior in a board game set-
ting. We showed that there can be significant information

Figure 7: Reaction time prediction accuracy of GPT-4IAR
models with different context length as a function of pro-
vided sequence length (one round = 11 tokens).

Figure 8: Reaction time root mean squared error (RMSE) as
a function of provided sequence length, measured in bins.

gain in predicting the decisions of a human agent by taking
their past behavior into account, yielding better performance
than previous state-of-the-art fully connected networks that
only took a single board into account to make a decision.
This hints at significant correlations on a longer horizon of
moves, meaning that a personal bias in strategy or other la-
tent variables can influence gameplay over many rounds. An
obvious example of an underlying latent variable influenc-
ing gameplay that may be inferred over multiple games –
and might not be immediate by only observing a short se-
quence – is the player’s skill or expertise.

We also showed that there may be a correlation between



the time a player takes to make a move and their long-term
strategies. We show this quantitatively through prediction
accuracy and RMSE of (discretized) reaction times. This re-
sult could also hint at individual features, such as skill, that
the network may be able to identify through long trajectories
of game states and actions.

Further immediate work includes more thorough statisti-
cal testing to consolidate our conclusions, performing abla-
tion tests with hyperparameters other than maximum con-
text length, and exploring other representations for the data
to see if there can be improvements over the “naive” token
representation of the board.

In the future, we plan to explore the inference of other
statistics, such as Elo score (a measure of the player’s skill),
from which we could further extract information on what af-
fects human decisions. Going a step further, we could also
condition the predicted gameplay by feeding the network
with relevant statistics, such as the player’s Elo score. In
other words, we could train a single network that would
be able to play like humans with different levels of exper-
tise. Notably, previous efforts such as Project Maia achieved
this feature by training distinct models for different Elo tiers
(McIlroy-Young et al. 2020b).

Finally, the framework we presented and our results with
this specific game can likely be extended to other combina-
torial games and tasks, such as Go and Chess, as the archi-
tecture just depends on the tokenization. Although previous
work has addressed the use of transformers to play Chess
and Go (Noever, Ciolino, and Kalin 2020; Ciolino, Kalin,
and Noever 2020), this was done through fine-tuning a text-
based GPT to a restricted vocabulary corresponding to al-
gebraic notation on each game. It would be interesting to
explore potential differences in performance between these
different training approaches.
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Dedicated Section
In this work, we presented GPT-4IAR, a transformer neural
network architecture that aims to emulate human behavior in
the cognitive task of playing the four-in-a-row (4IAR) board
game. Our work sits exactly at the intersection of the fields
of cognitive science, machine learning, and human-machine
interaction or collaborative AI.

From the cognitive science perspective, our ‘oracle’
model can be used by cognitive scientists as a virtual labo-
ratory to test hypotheses and improve our best hand-crafted
cognitive models of human learning, planning and decision
making within this board game setting, by having access to
‘virtual humans’ that can be tested in unlimited scenarios
and counterfactual conditions. Clearly, results obtained in
silico with emulated humans would need to be reproduced
with real humans, but still we envision this could substan-
tially speed up research into human cognition by systemati-
cally exploring non-trivial shortcomings in our state-of-the-
art cognitive models of game playing (van Opheusden et al.
2023).

In terms of machine learning, the current work is based
on established transformer neural network architectures
(Vaswani et al. 2017; Radford et al. 2019). Still, once our
approach is scaled to more complex settings and higher fi-
delity of human emulation we envision several challenging
problems will arise which will require the development of
advanced machine learning solutions. To name one, we will
potentially have to deal with scaling our method to very long
context windows, an open research area within modern large
language models (Press, Smith, and Lewis 2022; Su et al.
2024).

Finally, our work has immediate implications for human-
machine interaction and collaborative AI. Our ‘human emu-
lators’ can be used as better opponents for other human play-
ers – playing like humans and not like AIs. While work with
similar goals exists such as Project Maia (McIlroy-Young
et al. 2020b), our model will extend beyond that by poten-
tially affording specific emulation of a variety of different
game styles within the same model. More broadly, our ap-
proach is an example of building an AI system that behaves
like a human (McIlroy-Young et al. 2020a,b; Pearce et al.
2023), which can be useful both for building collaborative
AI models (using emulated humans as a proxy during train-
ing) as well as a technique for making the trained AI models
themselves behave more like humans.
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